Defining the properties of the nonhelical tail domain in type II keratin 5: insight from a bullous disease-causing mutation.
نویسندگان
چکیده
Inherited mutations in the intermediate filament (IF) proteins keratin 5 (K5) or keratin 14 (K14) cause epidermolysis bullosa simplex (EBS), in which basal layer keratinocytes rupture upon trauma to the epidermis. Most mutations are missense alleles affecting amino acids located in the central alpha-helical rod domain of K5 and K14. Here, we study the properties of an unusual EBS-causing mutation in which a nucleotide deletion (1649delG) alters the last 41 amino acids and adds 35 residues to the C terminus of K5. Relative to wild type, filaments coassembled in vitro from purified K5-1649delG and K14 proteins are shorter and exhibit weak viscoelastic properties when placed under strain. Loss of the C-terminal 41 residues contributes to these alterations. When transfected in cultured epithelial cells, K5-1649delG incorporates into preexisting keratin IFs and also forms multiple small aggregates that often colocalize with hsp70 in the cytoplasm. Aggregation is purely a function of the K5-1649delG tail domain; in contrast, the cloned 109 residue-long tail domain from wild type K5 is distributed throughout the cytoplasm and colocalizes partly with keratin IFs. These data provide a mechanistic basis for the cell fragility seen in individuals bearing the K5-1649delG allele, and point to the role of the C-terminal 41 residues in determining K5's assembly properties.
منابع مشابه
The nonhelical tail domain of keratin 14 promotes filament bundling and enhances the mechanical properties of keratin intermediate filaments in vitro
Keratin filaments arise from the copolymerization of type I and II sequences, and form a pancytoplasmic network that provides vital mechanical support to epithelial cells. Keratins 5 and 14 are expressed as a pair in basal cells of stratified epithelia, where they occur as bundled arrays of filaments. In vitro, bundles of K5-K14 filaments can be induced in the absence of cross-linkers, and exhi...
متن کاملA New Mutation Causing Severe Infantile-Onset Pompe Disease Responsive to Enzyme Replacement Therapy
Pompe disease (PD), also known as “glycogen storage disease type II (OMIM # 232300)” is a rare autosomal recessive disorder characterized by progressive glycogen accumulation in cellular lysosomes. It ultimately leads to cellular damage. Infantile-onset Pompe disease (IOPD) is the most severe type of this disease and is characterized by severe hypertrophic cardiomyopathy and generalized hypoton...
متن کاملScreening of DFNB3 in Iranian families with autosomal recessive non-syndromic hearing loss reveals a novel pathogenic mutation in the MyTh4 domain of the MYO15A gene in a linked family
Objective(s): Non-syndromic sensorineural hearing loss (NSHL) is a common disorder affecting approximately 1 in 500 newborns. This type of hearing loss is extremely heterogeneous and includes over 100 loci. Mutations in the GJB2 gene have been implicated in about half of autosomal recessive NSHL (ARNSHL) cases, making this the most common cause of ARNSHL. For the latter form of deafness, most f...
متن کاملThe roles of K5 and K14 head, tail, and R/K L L E G E domains in keratin filament assembly in vitro
Type I and type II keratins form obligatory heterodimers, which self-assemble into 10-nm intermediate filaments (IFs). Like all IF proteins, they have a central alpha-helical rod domain, flanked by nonhelical head and tail domains. The IF rod is more highly conserved than head and tail, and within the rod, the carboxy R/K L L E G E sequence is more highly conserved than most other regions. Muta...
متن کاملFunctional Investigation of the Novel BRCA1variant (Glu1661Gly) byComputationalTools andYeastTranscription Activation Assay
Introduction: Mutations in the BRCA1 gene are major risk factors for breast and ovarian cancers. However, the relationship between some BRCA1 mutations and cancer risk remains largely unknown. Cancer risk predictions could be improved by evaluation of the impairment degree in the BRCA1 functions due to a specific mutation. This study aimed to assess the functional effect of a novel variant (Glu...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Molecular biology of the cell
دوره 16 3 شماره
صفحات -
تاریخ انتشار 2005